Laterally Confined Microfluidic Patterning of Cells for Engineering Spatially Defined Vascularization.
نویسندگان
چکیده
A biofabrication strategy for creating planar multiscale protein, hydrogel, and cellular patterns, and simultaneously generating microscale topographical features is developed that laterally confines the patterned cells and direct their growth in cell permissive hydrogels.
منابع مشابه
Patterning vascular networks in vivo for tissue engineering applications.
The ultimate design of functionally therapeutic engineered tissues and organs will rely on our ability to engineer vasculature that can meet tissue-specific metabolic needs. We recently introduced an approach for patterning the formation of functional spatially organized vascular architectures within engineered tissues in vivo. Here, we now explore the design parameters of this approach and how...
متن کاملWettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms.
Surface tension driven transport of liquids on open substrates offers an enabling tool for open micro total analysis systems that are becoming increasingly popular for low-cost biomedical diagnostic devices. The present study uses a facile wettability patterning method to produce open microfluidic tracks that - due to their shape, surface texture and chemistry - are capable of transporting a wi...
متن کاملMicrofluidic Tissue: a Biodegradable Scaffold with Built-in Vasculature for Cardiac Tissue Vascularization and Surgical Vascular Anastomosis
To tackle tissue vascularization, a robust 3-D micro-patterning technique was developed to create complex bioscaffolds from a synthetic biodegradable elastomer (Poly(octamethylene maleate (anhydride) citrate) by pre-patterning, solidifying, and stamping thin polymer sheets layer-by-layer to form intricate micro-structures. The bio-scaffold contains an 3-D perfusable branched network which suppo...
متن کاملNanoliter Liquid Patterning in Aqueous Environments for Spatially-Defined Reagent Delivery to Mammalian Cells
Microscale biopatterning enables regulation of cell-material interactions and cell shape, and enables multiplexed high-throughput studies in a cell- and reagent-efficient manner. The majority of available techniques rely on physical contact of a stamp, pin, or mask with mainly a dry surface. Inkjet and piezoelectric printing is carried out in a non-contact manner but still requires a substantia...
متن کاملA Microfluidic Chip for Cell Patterning Utilizing Paired Microwells and Protein Patterns "2279
Cell patterning has been widely used in research on fundamental cell biology and in applications such as tissue engineering, neuron network formation, cell based biosensor and drug screening. Although various methods have been developed, cell patterning in an enclosed microfluidic device at single cell level remains challenging. This paper describes a microfluidic device with microwells and pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Small
دوره 12 37 شماره
صفحات -
تاریخ انتشار 2016